Spatially heterogeneous dynamics in supercooled organic liquids

Stephen Swallen, Marcus Cicerone, Marie Mapes, Mark Ediger, Robert McMahon, Lian Yu

UW-Madison

NSF Chemistry

Image from Weeks and Weitz, Science (2000)
Outline

• Molecular reorientation and the α relaxation process
• Translational diffusion
• Spatially heterogeneous dynamics
• Solid state NMR experiments
• Computer simulations
The α relaxation process controls many aspects of dynamics in supercooled liquids and glasses

- α or structural relaxation process: dielectric relaxation, dynamic Kerr effect, light scattering, NMR, probe rotation
- Conventional view: α relaxation controls diffusion, rate of crystal growth, and ability to equilibrate a glass

Molecular reorientation closely tracks η/T

Debye-Stokes-Einstein:

$$\tau = \frac{\eta V}{kT}$$

Cicerone et al. JCP (1995)
High fragility glassformers show a non-Arrhenius temperature dependence as T_g is approached from above.

Outline

• Molecular reorientation and the α relaxation process
• **Translational diffusion**
• Spatially heterogeneous dynamics
• Solid state NMR experiments
• Computer simulations
Self-diffusion in liquids far above T_g

- $<r^2> = 6Dt$
- D for water at 298 K
- First four decades of slowing diffusion tracks viscosity quite well (SE)
- SE derived for large spheres in a continuum

\[D = \frac{kT}{6\pi \eta r_H} \]

Figure 1. Self-diffusion coefficients D in glass forming liquids: salol (●), glycerol (□), PDE (○), CDE (△). The full lines were obtained from the Stokes–Einstein relation, eq 8, using the hydrodynamic radii, $R_{\text{trans}} = R_H$, from Table 1, and the shear viscosities, η, from the literature quoted in section III.

(Chang and Sillescu, JPCB, 1997)
Sillescu and coworkers pioneered the study of diffusion in supercooled liquids. At 1.2 T_g, diffusion appears to be slightly “enhanced” compared to SE.

Stokes Einstein equation

$$D = \frac{kT}{6\pi\eta r_H}$$

(Chang and Sillescu, JPCB, 1997)
Self-diffusion near T_g (trisnaphthylbenzene or TNB)

SIMS data with annealing at 353 K ($T_g + 6$ K); red lines showing Fickian diffusion with $D = 8 \times 10^{-16}$ cm2/s; Swallen et al., JPCB (2009)

From SIMSworkshop.org
TNB self-diffusion is significantly enhanced near T_g relative to viscosity (SE equation)

Self-diffusion in o-terphenyl (OTP) near T_g

Isothermal desorption data for OTP

Desorbed at $T_g + 9$ K
Fickian model
Film ~ 400 nm
OTP self-diffusion coefficients: large enhancement at T_g relative to viscosity

Mapes et al., JPCB 2006.
100 microsecond simulations of OTP

- Eastwood et al., J. Phys. Chem B 2013, 117, 12898
- Fully atomistic classical MD
- Diffusion is enhanced relative to rotational motion, in good agreement with experiments
Indomethacin (IMC) self-diffusion is significantly enhanced near T_g (SIMS)

Note: τ_α and viscosity have same T dependence
Swallen et al, Soft Matter 2011
The crystal growth rate is more closely connected with diffusion than with viscosity or structural relaxation (more to come…)

Diffusion: Swallen et al., Soft Matter 2011
Crystal growth rates: Wu and Yu, JPCB 2006
TNB, OTP, IMC show similar enhancement of D near T_g relative to τ_α (or viscosity)

Swallen et al, Soft Matter 2011
Self-diffusion of polystyrene 20-mers: Minimal enhancement of D

Figure 8 Urakawa et al. Macromolecules (2004)
Check of Fickian diffusion for PS 20-mers

Figure 6 Urakawa et al.
Si diffusion in SiO$_2$ (data compiled by Nascimento and Zanotto): Minimal Stokes-Einstein enhancement

Si diffusion and viscosity have the same T dependence down to T_g.
Summary this far

• Structural relaxation, molecular reorientation and viscosity have very nearly the same T dependence

• For IMC, TNB, and OTP – T dependence of D is weaker

• For Si in SiO$_2$ and PS 20-mer, D has same T dependence as all the others

• Why?
Outline

• Molecular reorientation and the α relaxation process
• Translational diffusion
• Spatially heterogeneous dynamics
• Solid state NMR experiments
• Computer simulations
Non-exponential correlation functions

Non-exponential correlation and relaxation functions

- Most prominent in fragile glassformers
- Often fit to KWW form: $\exp[-(t/\tau)^\beta]$
- Often $\beta = 0.5$ near T_g
- Two possible interpretations
- β places upper bound on the width of the local relaxation time distribution

Richert (1994)
Solid-state NMR allows selection and study of slow subensembles

- o-terphenyl (OTP) at $T_g + 11$ K
- Slow ensemble = slowest 29%
- Slow ensemble decays considerably slower and more exponentially
- Results => $\beta_{\text{intr}} \sim 1$, i.e., distribution of relaxation times is really the spatial distribution of relaxation times
- Heterogenous interpretation is correct

Size of regions with distinct dynamics can be measured by spin diffusion

- 4D3CP NMR expt developed by Tracht et al (PRL 1998)
- 3.7 nm at $T_g + 10$ K in PVAc
- ξ_{het} may be the same thing as ξ_{coop}
Simulations illustrate spatially heterogeneous dynamics at moderately high temperatures

- 17,500 identical spheres, near T_c, Dzugutov potential
- Most mobile 6% of particles are highlighted
- Similar color means a connected group

Colloidal particles show spatially heterogeneous dynamics

Weeks, Weitz …
Science (2000)

Confocal microscopy, 1.2 µm spheres, fastest spheres are colored.
Probe diffusion is enhanced relative to reorientation at lower temperature

- big Stokes-Einstein violation
- rotation and translation have different T dependences
- explained by spatially heterogeneous dynamics?

Cicerone and Ediger (1996)
Why does SE breakdown as T_g is approached in single component supercooled liquids (for low molecular weight, fragile glassformers)?

- A better question: Why does molecular rotation and translation apparently decouple with decreasing T? (comparison of two single particle correlation times).
- Homogeneous answer: Molecules translate further and further without rotating.
- Heterogeneous answer: For any individual molecule, rotation and translation is tight coupled (seen in simulations). Then, apparently decoupling must result from the diversity of local relaxation rates => heterogeneous dynamics. Translation should becomes non-Fickian on short length scales near T_g.
Cross-over to non-Fickian diffusion at high q

$\xi = 1.4$ nm; rms jump $= 3.4$ nm

Robust upper bound for ξ

First expts near T_g

Enhanced translational diffusion is associated with spatially heterogeneous dynamics

- Hard sphere simulations show strong connection between SHD and enhanced translation (Kumar, et al. JCP 2006).
- Molecular simulations show an increasing correlation between fast rotators and fast translators as the temperature is lowered towards $T_g \Rightarrow$ enhanced translation only appears when averaging over entire ensemble (Lombardo/Debenedetti JCP 2006, Chong/Kob, PRL 2006)
- Decoupling results from an increasing length scale associated with heterogeneous dynamics. See simulations by Chong and Kob, PRL 2009.
Hard sphere simulations show Stokes-Einstein breakdown

Dumbbell simulations by Chong/Kob (PRL 2009)

Left: Correlation between local rotation rate and local translation rate increases with decreasing T.
Right: Decoupling between average D and tau results from correlated motion with an increasing length scale.
Summary

• High T liquids do not feel energy landscape => all relaxation processes have the same T dependence and SE works
• As T is lowered to T_g, fragile liquids exhibit spatially heterogeneous dynamics => SE breakdown
• Dynamics can vary spatially by 1-4 decades near T_g
• Tracer and self diffusion can be enhanced relative to reorientation or viscosity by 1-4 decades
• Regions of slow dynamics extend 1-3 nm; polymers too large to show enhanced diffusion
• How important is heterogeneous dynamics for strong glassformers?? (recall D for Si in SiO$_2$)